Black Pepper

The organic black pepper we use in our compound contains a product called piperine. According to an article published in October 2010 in an issue of Molecular pain, this is a similar chemical to the capsaicin that is found in chilli peppers. Piperine has been found to help to reduce pain by triggering receptors in the body which in effect counteract pain.


The medicinal properties of curcumin obtained from Curcuma longa L. cannot be utilised because of poor bioavailability due to its rapid metabolism in the liver and intestinal wall. In this study, the effect of combining piperine, a known inhibitor of hepatic and intestinal glucuronidation, was evaluated on the bioavailability of curcumin in rats and healthy human volunteers. When curcumin was given alone, in the dose 2 g/kg to rats, moderate serum concentrations were achieved over a period of 4 h. Concomitant administration of piperine 20 mg/kg increased the serum concentration of curcumin for a short period of 1-2 h post drug. Time to maximum was significantly increased (P < 0.02) while elimination half life and clearance significantly decreased (P < 0.02), and the bioavailability was increased by 154%. On the other hand in humans after a dose of 2 g curcumin alone, serum levels were either undetectable or very low. Concomitant administration of piperine 20 mg produced much higher concentrations from 0.25 to 1 h post drug (P < 0.01 at 0.25 and 0.5 h; P < 0.001 at 1 h), the increase in bioavailability was 2000%. The study shows that in the dosages used, piperine enhances the serum concentration, extent of absorption and bioavailability of curcumin in both rats and humans with no adverse effects.


For millennia, spices have been an integral part of human diets and commerce. Recently, the widespread recognition of diet-health linkages bolsters their dietary importance. The bioactive components present in them are of considerable significance owing to their therapeutic potential against various ailments. They provide physiological benefits or prevent chronic ailment in addition to the fundamental nutrition and often included in the category of functional foods. Black pepper (Piper Nigrum L.) is an important healthy food owing to its antioxidant, antimicrobial potential and gastro-protective modules. Black pepper, with piperine as an active ingredient, holds rich phytochemistry that also includes volatile oil, oleoresins, and alkaloids. More recently, cell-culture studies and animal modeling predicted the role of black pepper against number of maladies. The free-radical scavenging activity of black pepper and its active ingredients might be helpful in chemoprevention and controlling progression of tumor growth. Additionally, the key alkaloid components of Piper Nigrum, that is, piperine assist in cognitive brain functioning, boost nutrient's absorption and improve gastrointestinal functionality. In this comprehensive treatise, efforts are made to elucidate the antioxidant, antimicrobial, anti-inflammatory, gastro-protective, and antidepressant activities of black pepper. Moreover, the synergistic interaction of black pepper with different drugs and nutrients is the limelight of the manuscript. However, the aforementioned health-promoting benefits associated with black pepper are proven in animal modeling. Thus, there is a need to conduct controlled randomized trials in human subjects, cohort studies, and meta-analyses. Such future studies would be helpful in recommending its application in diet-based regimens to prevent various ailments.



The objective of this study was to determine the anti-inflammatory, nociceptive, and antiarthritic effects of piperine, the active phenolic component in black pepper extract.


The in vitro anti-inflammatory activity of piperine was tested on interleukin 1ß (IL1ß)-stimulated fibroblast-like synoviocytes derived form patients with rheumatoid arthritis. The levels of IL6, matrix metalloproteinase (MMPs), cyclo-oxygenase 2 (COX-2), and prostaglandin E2 (PGE2) were investigated by ELISA and RT-PCR analysis. The analgesic and antiarthritic activities of piperine were investigated on rat models of carrageenan-induced acute paw pain and arthritis. The former were evaluated with a paw pressure test, and the latter by measuring the squeaking score, paw volume, and weight distribution ratio. Piperine was administrated orally to rats at 20 and 100 mg/kg/day for 8 days.


Piperine inhibited the expression of IL6 and MMP13 and reduced the production of PGE2 in a dose dependant manner at concentrations of 10 to 100 µg/ml. In particular, the production of PGE2 was significantly inhibited even at 10 µg/ml of piperine. Piperine inhibited the migration of activator protein 1 (AP-1), but not nuclear factor (NF)?B, into the nucleus in IL1ß-treated synoviocytes. In rats, piperine significantly reduced nociceptive and arthritic symptoms at days 8 and 4, respectively. Histological staining showed that piperine significantly reduced the inflammatory area in the ankle joints.


These results suggest that piperine has anti-inflammatory, antinociceptive, and antiarthritic effects in an arthritis animal model. Thus, piperine should be further studied with regard to use either as a pharmaceutical or as a dietary supplement for the treatment of arthritis.